Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography.
نویسندگان
چکیده
Biophotonic imaging with ultrasound-modulated optical tomography (UOT) promises ultrasonically resolved imaging in biological tissues. A key challenge in this imaging technique is a low signal-to-noise ratio (SNR). We show significant UOT signal enhancement by using intense time-gated acoustic bursts. A CCD camera captured the speckle pattern from a laser-illuminated tissue phantom. Differences in speckle contrast were observed when ultrasonic bursts were applied, compared with when no ultrasound was applied. When CCD triggering was synchronized with burst initiation, acoustic-radiation-force-induced displacements were detected. To avoid mechanical contrast in UOT images, the CCD camera acquisition was delayed several milliseconds until transient effects of acoustic radiation force attenuated to a satisfactory level. The SNR of our system was sufficiently high to provide an image pixel per acoustic burst without signal averaging. Because of the substantially improved SNR, the use of intense acoustic bursts is a promising signal enhancement strategy for UOT.
منابع مشابه
Ultrasound-modulated optical tomography with intense acoustic bursts.
Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conf...
متن کاملMulti-optical-wavelength ultrasound-modulated optical tomography: a phantom study.
We used multiple optical wavelengths to study ultrasound-modulated optical tomography (UOT) in tissue phantoms. By using intense acoustic bursts and a CCD camera-based speckle contrast detection technique, we observed variations of the ultrasound-modulated signal at various optical absorptions. The experimental variations were found to be highly correlated with predictions from Monte Carlo simu...
متن کاملSentinel lymph node detection ex vivo using ultrasound-modulated optical tomography.
We apply ultrasound-modulated optical tomography (UOT) to image ex-vivo methylene-blue-dyed sentinel lymph nodes embedded in 3.2-cm-thick chicken breast tissues. The UOT system is implemented for the first time using ring-shaped light illumination, intense acoustic bursts, and charge-coupled device (CCD) camera-based speckle contrast detection. Since the system is noninvasive, nonionizing, port...
متن کاملUltrasound-modulated optical tomography in reflection mode with ring-shaped light illumination.
We have succeeded in implementing ring-shaped light illumination ultrasound-modulated optical tomography (UOT) in reflection mode. The system used intense acoustic bursts and a charge-coupled device (CCD) camera-based speckle contrast detection method. In addition, the implementation allows placing the tissue sample below (not within) an acoustic coupling water tank and scanning the tissue with...
متن کاملStochastic explanation of speckle contrast detection in ultrasound-modulated optical tomography.
Ultrasound-modulated optical tomography is an imaging technique that detects ultrasonically tagged light in optically turbid media to obtain images with optical contrast and ultrasonic spatial resolution. A CCD-camera-based speckle contrast detection scheme has been introduced previously to detect modulated light emerging from the ultrasonic sample volume. Differences in speckle contrast were e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 31 16 شماره
صفحات -
تاریخ انتشار 2006